【次世代電池】イオン液体とは?反応や特徴、メリット、デメリット(課題)は?

【次世代電池】イオン液体とは?反応や特徴、メリット、デメリットは?

 

スマホ向けのバッテリーや電気自動車向けバッテリーを始めとして採用されているリチウムイオン電池において、更なる高容量化、高電圧化、高エネルギー密度化に向けて、各企業で様々な研究開発が進められています。

 

リチウムイオン電池では正極、負極、セパレータ等に加えて有機溶剤系の電解液を使用することが一般的ですが、最近ではイオン液体と呼ばれる液体状態のイオンのみからなる物質を使用する研究が徐々に盛んになりつつあります。

 

こちらのページでは、イオン液体に関する内容を解説しています。

 

・そもそもイオン液体とは?

 

・リチウムイオン電池の溶媒として使用される場合のイオン液体の一般的な特徴

 

・リチウムイオン電池材料として注目されているイオン液体の構造、反応、特徴

 

というテーマで解説しています。

 

 

そもそもイオン液体とは?

イオン液体とは、上述のようイオンのみから構成される液体のことを指します。

 

一般的に、NaCl(塩化ナトリウム)などのイオン結合からなる塩は室温(例えば25℃)では固体であることが多いです。

 

しかし、数百度といった温度まで上げることにより、その塩は融解して、液体になります。

 

このように塩を高温にし溶かしたもののことを溶融塩と呼びます。

 

これに対して、イオン液体とは高温にしなくても常温で液体であるイオンのみからなる物質のことを指します。

 

後に紹介するような構造を有しているものがイオン液体の代表であり、通常の液体では見られない面白い特徴が多々あります。

 

当サイトのメインテーマであるリチウムイオン電池などにおいても、その特殊な性能から更なる電池の高性能化につながるポテンシャルを持つ材料として非常に注目されています。

 

関連記事

電池の容量[mAh,Ah]とは?
エネルギー密度とは?
作動電圧、内部抵抗、出力とは?
正極と負極の短絡とは?
リチウムイオン電池の構成と反応、特徴は?

 

 

リチウムイオン電池の溶媒として使用される場合のイオン液体の一般的な特徴

 

リチウムイオン電池として求められる特性には様々ありますが、出力の向上(内部抵抗の低減)、安全性の向上などが挙げられます。

 

これらの観点からイオン液体を使用した場合の特徴(メリット)について解説します。

 

 

電池の内部抵抗の低減の観点から

 

内部抵抗の低減の観点から解説します。

 

イオン液体はエチレンカーボネート(EC)やジエチルカーボネート(DEC)などの混合物である通常の電解液と比較して、電気伝導率が高いというメリットがあります。

 

イオン移動抵抗は電池の内部抵抗の一つであるために、低いほど内部抵抗を低減でき、結果として出力を上げることができます。

 

また、イオン液体を構成するカチオンとして有名なイミダゾリウム塩は室温において最も高い電気伝導度を示すほどです。

 

 

電池の安全性向上の観点から

 

電池の安全性の観点からは、一般的な電解液と比較すると、電解液は一般的に引火性液体であるのにたいして、イオン液体ではイオンのみから構成されるために蒸気圧がほとんどなく難燃性、不燃性の液体であることが特徴(メリット)の一つと言えるでしょう。

 

つまり、電池の内部短絡などの異常時に発火が起こったとしても、イオン液体がその火から引火することはないといえます。

 

ただし、電池の短絡時などによる異常状態になる場合は、電解液というよりも正極活物質が分解されその際に酸素を放出するかどうかが重要なポイントであり、難燃性、不燃性液体を使用することでは若干の安全性が向上する程度と言えるでしょう。

 

安全性にこだわる次世代の電池としては、固体電解質を使用する全固体電池の方がより優れていると言えるでしょう。

 

 

このように、リチウムイオン電池においては、電気伝導性を高めることができるということがイオン液体を使用する最も大きなメリットであると言えます。

 

現段階では、まだ基礎研究段階であり、リチウムイオン電池として使用した場合の電池材料としての寿命や環境問題にならない物質であるかどうかなどと、多々検討しなければならない課題があります。

 

関連記事

電池の容量[mAh,Ah]とは?
エネルギー密度とは?
作動電圧、内部抵抗、出力とは?
正極と負極の短絡とは?
リチウムイオン電池の構成と反応、特徴は?
固体電解質を使用する全固体電池とは?
電池の内部短絡試験とは?
リチウムイオン電池の電解液とは?
電気伝導率とは?

 

 

リチウムイオン電池材料として注目されているイオン液体の構造、反応、特徴

 

 

 

【次世代電池】イオン液体とは?反応や特徴、メリット、デメリット(課題)は? 関連ページ

リチウムイオン電池の正極活物質とコバルト酸リチウムの反応と特徴
【容量の算出】コバルト酸リチウムの理論容量を算出する方法
リン酸鉄リチウム(LFP)の反応と特徴 Li-Fe(リチウムフェライト)電池とは?鉛蓄電池の置き換えに適している?
【容量の算出】マンガン酸リチウムの理論容量を算出する方法
リン酸鉄リチウム(LFP)の合成方法
【容量の算出】リン酸鉄リチウムの理論容量を算出する方法
マンガン酸リチウムの反応と特徴
リチウムイオン電池における導電助剤の位置づけ VGCF(気相成長炭素)の特徴
正極の電極構造
黒鉛の反応と特徴
難黒鉛化炭素の反応と特徴
易黒鉛化炭素の反応と特徴
チタン酸リチウムの反応と特徴
電解液(溶媒)の材料化学
電解液(溶媒)に入れる添加剤の役割と種類(VC,FECなど)
電解液(塩)の材料化学 なぜ市販品ではLiPF6が採用されているか?
リチウムイオン電池におけるセパレータの位置づけと材料化学
リチウムイオン電池におけるバインダーの位置づけと材料化学
溶媒和・脱溶媒和とは?【リチウムイオン電池の反応と溶媒和・脱溶媒和)
【リチウムイオン電池材料の評価】セパレータの透気度とは?
リチウムイオン電池のセパレータに求められる特性
リチウムイオン電池の寿命予測方法(ルート則)
リチウムイオン電池の寿命予測方法(内部抵抗の上昇の予測)
リチウムイオン電池の劣化後の放電曲線(作動電圧)の予測方法
【アレニウスの式使用問題演習】リチウムイオン電池の寿命予測をExcelで行ってみよう!
【続アレニウスの式使用問題演習】リチウムイオン電池の寿命予測をExcelで行ってみよう!その2
【サイクル試験の寿命予測、劣化診断】リチウムイオン電池の寿命予測(サイクル試験)をExcelで行ってみよう!
リチウムイオン電池の寿命予測方法 ルート則とべき乗則
【リチウムイオン電池の解析】XRDとは?測定原理と得られる情報、X線回折装置
【リチウムイオン電池の解析】XRDなどに使用されるKα線とは?
【リチウムイオン電池の解析】XPSとは?測定原理と得られる情報
【リチウムイオン電池の解析】ラマン分光法とは?測定原理と得られる情報
【リチウムイオン電池の解析】IR(赤外分光法)とは??測定原理と得られる情報
【リチウムイオン電池の解析】ICP-MS(ICP質量分析法)とは??測定原理と得られる情報
【リチウムイオン電池の解析】SEMとは?測定原理と得られる情報
【解析関連用語】化学におけるinsituとはどういう意味?読み方は?【リチウムイオン電池の解析】
【演習問題】ランベルトベールの法則と計算・演習問題【リチウムイオン電池の解析】
DSCとは?測定原理と得られる情報は?
ヘンリーの吸着等温式とは?導出過程は?
ラングミュア(langmuir)の吸着等温式とは?導出過程は?
化学吸着と物理吸着の違いは?活性炭と物理吸着【電気二重層キャパシタ材料としても使用】
【演習問題】比表面積を求める方法【BET吸着_ラングミュア吸着】
【比表面積の計算】BET吸着とは?導出過程は?【リチウムイオン電池の解析】
【材料力学】弾性係数とは?求め方と使用方法【リチウムイオン電池の構造解析】
【材料力学】熱ひずみ・熱応力とは?導出と計算方法は?
【材料力学】ポアソン比とは?求め方と使用方法【リチウムイオン電池の構造解析】
【材料力学】応力-ひずみ線図とは?【リチウムイオン電池の構造解析】
【材料力学】材料のたわみ計算方法は?断面二次モーメント使用【リチウムイオン電池の構造解析】
【材料力学】クリープとは 材料のクリープ
【材料力学】断面二次モーメントとは?断面係数とは?【リチウムイオン電池の構造解析】
【材料力学】剥離強度とは?電極の剥離強度【リチウムイオン電池の構造解析】
【材料力学】トルクと動力・回転数 導出と計算方法【演習問題】
【材料力学】馬力と動力の変換方法【演習問題】
【材料力学】公差とは?公差の計算と品質管理
寸法収縮・成型収縮とは?計算問題を解いてみよう【演習問題】
【材料力学】固体の体積膨張率(体積膨張係数)とは?固体の体積膨張率の計算を行ってみよう【演習問題】
【材料力学】気体の体積膨張率(体積膨張係数)とは?気体の体積膨張率の計算を行ってみよう【演習問題】
ダイキャスト(ダイカスト)と鋳造(ちゅうぞう)の違いは?
絶縁距離とは?沿面距離と空間距離の違いは?
電池の安全性試験の種類
電池の安全性試験の位置づけと過充電試験
過充電試験の反応詳細
リチウムイオン電池の外部短絡試験とは?
リチウムイオン電池の内部短絡試験とは?
リチウムイオン電池の釘刺し試験とは?
リチウムイオン電池の振動試験とは?
リチウムイオン電池の熱衝撃試験とは?
リチウムイオン電池の過放電試験とは?
【演習問題】表面張力とは?原理と計算方法【リチウムイオン電池パックの接着】
接着剤が付く理由は?アンカー効果とは?【リチウムイオン電池パックの接着】
弾性接着剤とは?特徴は?シリコーンと変成シリコーンの違いは?【リチウムイオン電池パックの接着】
ホットメルト系接着剤とは?特徴は?【リチウムイオン電池パックの接着】
PPやPEは接着が難しい?理由と解決策は?【リチウムイオン電池パックの接着】
エポキシ接着剤とは?特徴は?【リチウムイオン電池パックの接着】
接着と粘着、接着剤と粘着剤の違いは?
接着剤における1液型と2液型(1液系と2液系)の違いは?
【角型電池】リチウムイオン電池における安全弁とは?
振動試験における対数掃引とは?直線掃引との違いは?
振動試験時の共振とは?【リチウムイオン電池の安全性】
【リチウムイオン電池の熱衝撃試験】熱膨張係数の違いによる応力の計算方法
【演習問題】金属の電気抵抗と温度の関係性 温度が上がると抵抗も上がる?
図積分とは?Excelで図積分を行ってみよう!
多孔度とは何?多孔度の計算方法は?電極の多孔度と電池性能の関係
正極にはなぜAl箔を使用?負極はなぜCu箔を使用?
真密度、見かけ密度(粒子密度)、タップ密度、嵩密度の違いは?
粉体における一次粒子・二次粒子とは?違いは?
負極のCu箔の作製方法 圧延銅箔
負極のCu箔の作製方法 電解銅箔
【リチウムイオン電池の水分測定】カールフィッシャー法の原理と測定方法
【演習問題】細孔径を求める方法【水銀圧入法】
mmHgとPa,atmを変換、計算する方法【リチウムイオン電池の解析】
蒸着とは?CVDとPVDの違いは?
【次世代電池】全固体電池とは?反応や特徴、メリット、デメリットは?
【リチウムイオン電池の材料】シリコン系負極の反応と特徴、メリット、デメリットは?【次世代電池の材料】
【全固体電池】ガラスとは何か?ガラス転移点(TG)oha全固体電池とは?反応や特徴、メリット、デメリットは?(コピー)
プレドープ、プレドープ電池とは?リチウムイオン電池や電気二重層キャパシタとの違いは?
粘度とは?粘度と動粘度の違い
エネルギー変換効率とは?燃料電池の理論効率・理論起電力の計算方法【演習問題】
電位、電圧、電位差、電圧降下の違い【リチウムイオン電池関連の用語】
SBR(スチレンブタジエンゴム)とは?ゴムにおける加硫とは?【リチウムイオン電池の材料】
フィラーとは何か?剤と材の違いは?【リチウムイオン電池の材料】
有機酸とは?有機酸に対する耐性とは?【リチウムイオン電池の材料】
潜熱と顕熱とは?潜熱と顕熱の違いは?
ポリオレフィンとは何か?【リチウムイオン電池の材料】
エンプラ、スーパーエンプラとは何か?エンプラとスーパーエンプラの違いは?【リチウムイオン電池の材料】
化学におけるドープとは?プレドープとの違いは?
エクセルギ-とは?エクセルギ-の計算問題【演習問題】
エマルジョン・ラテックスとは?ラテックス系バインダーとは?【リチウムイオン電池の材料】
電池におけるプラトーの意味は?【リチウムイオン電池の用語】
単位のrpmとは?rpmの変換・計算方法【演習問題】
平均自由行程とは?式と導出方法は?【演習問題】
弾性衝突と非弾性衝突の違いは?【演習問題】
浮力とは何か?浮力の計算方法
シーリングとコーキングの違いは?
固体高分子形燃料電池(PEFC)における電解質膜の役割は?種類は?
固体高分子形燃料電池(PEFC)における電極触媒とは?役割や種類は?
固体高分子形燃料電池(PEFC)における酸素還元活性(ORR)とは?
固体高分子形燃料電池(PEFC)におけるECSA(白金有効利用面積)とは?
固体高分子形燃料電池(PEFC)におけるフラッディング・ドライアウトとは?
固体高分子形燃料電池(PEFC)におけるクロスオーバー(ガスクロスオーバー)とは?
固体高分子形燃料電池(PEFC)におけるアイオノマー(イオノマー)とは?役割は?
wt%(重量パーセント)・mass(質量パーセント)とは?計算方法は?【演習問題】
放射能の半減期 計算方法と導出方法は?【反応速度論】
ストークス半径とイオン半径
ファントホッフの式とは?導出と計算方法は【演習問題】
化学的安定性 HOMO-LUMO
遠心分離と遠心効果 計算と導出方法【演習問題】
rpmをGに変換する方法 計算問題を解いてみよう【演習問題】
w/w%・w/v%・v/v% 定義と計算方法【演習問題】
分子式・組成式・化学式 見分け方と違いは?【演習問題】
テルミット反応 リチウムイオン正極材のリサイクル
誘電率と比誘電率 換算方法【演習問題】
誘電体(絶縁体)と誘電分極(イオン分極・電子分極・配向分極)
導体と静電誘導 静電誘導と誘電分極との違いは?
屈折率と比誘電率の関係 計算問題を解いてみよう【演習問題】
双極子と双極子モーメント 意味と計算方法
回折格子における格子定数とは?格子定数の求め方
引火点と発火点(着火点)の違いは?【危険物取扱者乙4・甲種などの考え方】
燃焼範囲とは【危険物取扱者乙4・甲種などの考え方】
危険物における自然発火とは【危険物取扱者乙4・甲種などの考え方】
危険物における指定数量 指定数量と倍数の計算方法【危険物取扱者乙4・甲種などの考え方】
危険物における保安距離や保有空地とは【危険物取扱者乙4・甲種などの考え方】
光速と音速はどっちが早いのか 光速と音速のマッハ数は?雷におけるの光と音の関係は?
マッハ数の定義は?計算問題を解いてみよう【演習問題】
1光年の意味とその距離は 地球何周分?ロケットでは何年かかる?新幹線では?
アンモニアの分子の形(立体構造)が三角錐(四面体)になる理由は?三角錐と正四面体の違いは?アンモニアの結合角は107度?
アンモニアの分子式・構造式・電子式・イオン式・分子量は?イオン反応式は?

HOME プロフィール お問い合わせ