【リチウムイオン電池の解析】IR(赤外分光法)とは??測定原理と得られる情報

【リチウムイオン電池の解析】IR(赤外分光法)とは??測定原理と得られる情報

 

リチウムイオン電池の正極や負極の表面の組成分析(例えばSEIの成分や電解液の分解成分等)や分散状態の分析、セパレータの表面状態の分析などに赤外分光法(IR)という測定方法が利用されます(劣化状態(SOH)の診断にも利用されます。)。

 

特に最近ではフーリエ変換型赤外分光法(FT-IR)が一般的に使用されています。

 

こちらのページでは、

 

赤外分光法(IR)とは?測定原理と得られる情報

 

・リチウムイオン電池における赤外分光法(IR)の使用方法概要

 

というテーマで解説しています。

 

(※赤外分光法(IR)はラマン分光と併せて互いに補間的な分析をできることで知られています)。

 

 

赤外分光法(IR)とは?測定原理と得られる情報

赤外分光法(IR)は言葉の通り、赤外線を試料に向かい放射した際の試料の吸収のスペクトルを測定する方法のことを指します

 

ラマン分光では試料に照射した光の散乱を測定していたのに対して、赤外分光法(IR)では光の吸収を測定しているといえます。

 

物質の電子状態、振動状態は固有であるため、吸収スペクトルも固有であり、その値から所持する構造がわかります。

 

測定方法としましては、試料に照射した赤外線のエネルギー − 試料に一部エネルギーを吸収された後に出てくるエネルギー = 吸収されエネルギーという関係から、構造の同定を行います。

 

吸収スペクトルのことを別名吸光度スペクトルとも呼び、具体的にはランベルトベールの法則により、その算出が行われます。

 

関連記事
 

劣化状態(SOH)とは?
XRDとは?測定原理と得られる情報
XPSとは?測定原理と得られる情報
SEMとは?測定原理と得られる情報
ラマン分光法とは?測定原理と得られる情報
【演習問題】ランベルトベールの法則と計算・演習問題【リチウムイオン電池の解析】

 

 

赤外分光法(IR)における活性の条件

 

赤外分光法にて測定しやすい、またはしにくい分子構造、振動モードがあります。

 

そして、赤外分光法では測定しやすい構造はラマン分光法では測定しにくく、赤外分光法では測定しにくい構造はラマン分光法では測定しやすくなるといった具合です。

 

例えば、C=C結合などの同じ元素からなるものは赤外分光法では測定しにくく、逆にC-H結合やC-O-C結合などでおこる逆対称伸縮運動(左右が対称に動かない運動)は測定しやすいです。

 

この赤外分光法にて測定しやすい、測定可能なことを赤外活性と呼びます。

 

赤外活性になる理由は難しい言葉でいうと、永久電子双極子モーメントを持つことや、振動時に誘起電気双極子モーメントを持つことと表現されますが、詳しいことは別ページにて解説します。

 

赤外活性の際にラマン不活性、ラマン活性の際に赤外不活性と相互で補う関係にあることを、交互禁制則と呼びます。

 

関連記事
 

劣化状態(SOH)とは?
XRDとは?測定原理と得られる情報
XPSとは?測定原理と得られる情報
SEMとは?測定原理と得られる情報
ラマン分光法とは?測定原理と得られる情報
【演習問題】ランベルトベールの法則と計算・演習問題【リチウムイオン電池の解析】

 

リチウムイオン電池における赤外分光法(IR)の使用方法概要

リチウムイオン電池における赤外分光法(IR)の使用方法としては、上述のように

 

・正極活物質、導電助剤や負極活物質、バインダーなどの表面の成分分析(例えばCO結合の同定などからの構造の予想)

 

・セパレータや電極全体の元素マッピングに使用

 

・初期と劣化後の電極中の各材料(正極活物質等)の表面成分の変化から劣化状態(SOH)の解析(例えば電解液が電極表面で分解しているかなど)

 

などに用いられます。

 

詳細は専門の分析機関と摺合せを行い、目的の測定が可能かどうかきちんと確認をしたうえで依頼をしましょう。

 

関連記事
 

劣化状態(SOH)とは?
XRDとは?測定原理と得られる情報
XPSとは?測定原理と得られる情報
SEMとは?測定原理と得られる情報
ラマン分光法とは?測定原理と得られる情報
【演習問題】ランベルトベールの法則と計算・演習問題【リチウムイオン電池の解析】

 

 


【記事作成者募集中】


【募集】記事作成者募集


いつも当サイトへご訪問、ご閲覧頂き誠にありがとうございます。


当サイトでは、電池の役に立つ知識から、電池の研究・開発に役立つ学術知識について解説しています。


学術知識では、電気化学や統計学、Excelの使用方法、電池の材料化学などを主に解説しています。


2018年現在おかげさまで、月数万アクセス以上をご閲覧いただけるようになりましたが、
さらに有益な情報、詳しい情報をお届けするためには、管理人、副管理人では、
カバーしきれない分野もあり(例えば高分子化学等)、現在記事作成者の募集をしています


もちろん現在私達が解説している分野でも、さらに詳しく書ける!という方がいらっしゃいましたら、
気軽にこちらまで連絡いただければ幸いです


自分の知識を活かし情報提供することでの、社会への貢献、自己実現を一緒に行ってみませんか(^_^)/?


お問い合わせはこちらにお願いいたします。


【記事の内容例】


・身近な乾電池やモバイルバッテリーに関する情報


・電気化学の知識(現在記載していない内容)


・統計学の知識(現在記載していない内容)


・化学工学の知識(現在記載していない内容)


・電池の材料化学の知識(現在記載していない内容)


などなど募集しています。


興味がある方はお気軽に、まずはこちらにご一報ください



【リチウムイオン電池の解析】IR(赤外分光法)とは??測定原理と得られる情報 関連ページ

リチウムイオン電池の正極活物質とコバルト酸リチウムの反応と特徴
【容量の算出】コバルト酸リチウムの理論容量を算出する方法
リン酸鉄リチウム(LFP)の反応と特徴 Li-Fe(リチウムフェライト)電池とは?鉛蓄電池の置き換えに適している?
【容量の算出】マンガン酸リチウムの理論容量を算出する方法
リン酸鉄リチウム(LFP)の合成方法
【容量の算出】リン酸鉄リチウムの理論容量を算出する方法
マンガン酸リチウムの反応と特徴
リチウムイオン電池における導電助剤の位置づけ VGCF(気相成長炭素)の特徴
正極の電極構造
黒鉛の反応と特徴
難黒鉛化炭素の反応と特徴
易黒鉛化炭素の反応と特徴
チタン酸リチウムの反応と特徴
電解液(溶媒)の材料化学
電解液(溶媒)に入れる添加剤の役割と種類(VC,FECなど)
電解液(塩)の材料化学 なぜ市販品ではLiPF6が採用されているか?
リチウムイオン電池におけるセパレータの位置づけと材料化学
リチウムイオン電池におけるバインダーの位置づけと材料化学
【リチウムイオン電池材料の評価】セパレータの透気度とは?
リチウムイオン電池のセパレータに求められる特性
リチウムイオン電池の寿命予測方法(ルート則)
リチウムイオン電池の寿命予測方法(内部抵抗の上昇の予測)
リチウムイオン電池の劣化後の放電曲線(作動電圧)の予測方法
【アレニウスの式使用問題演習】リチウムイオン電池の寿命予測をExcelで行ってみよう!
【続アレニウスの式使用問題演習】リチウムイオン電池の寿命予測をExcelで行ってみよう!その2
【サイクル試験の寿命予測、劣化診断】リチウムイオン電池の寿命予測(サイクル試験)をExcelで行ってみよう!
リチウムイオン電池の寿命予測方法 ルート則とべき乗則
【リチウムイオン電池の解析】XRDとは?測定原理と得られる情報、X線回折装置
【リチウムイオン電池の解析】XRDなどに使用されるKα線とは?
【リチウムイオン電池の解析】XPSとは?測定原理と得られる情報
【リチウムイオン電池の解析】ラマン分光法とは?測定原理と得られる情報
【リチウムイオン電池の解析】ICP-MS(ICP質量分析法)とは??測定原理と得られる情報
【リチウムイオン電池の解析】SEMとは?測定原理と得られる情報
【解析関連用語】insituとはどういう意味?読み方は?【リチウムイオン電池の解析】
【演習問題】ランベルトベールの法則と計算・演習問題【リチウムイオン電池の解析】
DSCとは?測定原理と得られる情報は?
ヘンリーの吸着等温式とは?導出過程は?
ラングミュア(langmuir)の吸着等温式とは?導出過程は?
化学吸着と物理吸着の違いは?
【演習問題】比表面積を求める方法【BET吸着_ラングミュア吸着】
【比表面積の計算】BET吸着とは?導出過程は?【リチウムイオン電池の解析】
【材料力学】弾性係数とは?求め方と使用方法【リチウムイオン電池の構造解析】
【材料力学】ポアソン比とは?求め方と使用方法【リチウムイオン電池の構造解析】
【材料力学】応力-ひずみ線図とは?【リチウムイオン電池の構造解析】
【材料力学】材料のたわみ計算方法は?断面二次モーメント使用【リチウムイオン電池の構造解析】
【材料力学】断面二次モーメントとは?断面係数とは?【リチウムイオン電池の構造解析】
【材料力学】剥離強度とは?電極の剥離強度【リチウムイオン電池の構造解析】
電池の安全性試験の種類
電池の安全性試験の位置づけと過充電試験
過充電試験の反応詳細
リチウムイオン電池の外部短絡試験とは?
リチウムイオン電池の内部短絡試験とは?
リチウムイオン電池の釘刺し試験とは?
リチウムイオン電池の振動試験とは?
リチウムイオン電池の熱衝撃試験とは?
リチウムイオン電池の過放電試験とは?
【演習問題】表面張力とは?原理と計算方法【リチウムイオン電池パックの接着】
接着剤が付く理由は?アンカー効果とは?【リチウムイオン電池パックの接着】
弾性接着剤とは?特徴は?シリコーンと変成シリコーンの違いは?【リチウムイオン電池パックの接着】
ホットメルト系接着剤とは?特徴は?【リチウムイオン電池パックの接着】
PPやPEは接着が難しい?理由と解決策は?【リチウムイオン電池パックの接着】
エポキシ接着剤とは?特徴は?【リチウムイオン電池パックの接着】
接着と粘着、接着剤と粘着剤の違いは?
接着剤における1液型と2液型(1液系と2液系)の違いは?
【角型電池】リチウムイオン電池における安全弁とは?
振動試験における対数掃引とは?直線掃引との違いは?
振動試験時の共振とは?【リチウムイオン電池の安全性】
【リチウムイオン電池の熱衝撃試験】熱膨張係数の違いによる応力の計算方法
【演習問題】金属の電気抵抗と温度の関係性 温度が上がると抵抗も上がる?
図積分とは?Excelで図積分を行ってみよう!
多孔度とは何?多孔度の計算方法は?電極の多孔度と電池性能の関係
正極にはなぜAl箔を使用?負極はなぜCu箔を使用?
真密度、見かけ密度(粒子密度)、タップ密度、嵩密度の違いは?
負極のCu箔の作製方法 圧延銅箔
負極のCu箔の作製方法 電解銅箔
【リチウムイオン電池の水分測定】カールフィッシャー法の原理と測定方法
【演習問題】細孔径を求める方法【水銀圧入法】
mmHgとPa,atmを変換、計算する方法【リチウムイオン電池の解析】
蒸着とは?CVDとPVDの違いは?
【次世代電池】全固体電池とは?反応や特徴、メリット、デメリットは?
【リチウムイオン電池の材料】シリコン系負極の反応と特徴、メリット、デメリットは?【次世代電池の材料】
【全固体電池】ガラスとは何か?ガラス転移点(TG)oha全固体電池とは?反応や特徴、メリット、デメリットは?(コピー)
【次世代電池】イオン液体とは?反応や特徴、メリット、デメリット(課題)は?
プレドープ、プレドープ電池とは?リチウムイオン電池や電気二重層キャパシタとの違いは?
プレドープ、プレドープ電池とは?リチウムイオン電池や電気二重層キャパシタとの違いは?(コピー)

HOME プロフィール お問い合わせ