リチウムイオン電池の負極活物質 黒鉛の反応と特徴

リチウムイオン電池の負極活物質 黒鉛の反応と特徴

 

このページでは、リチウムイオン電池の負極活物質である黒鉛に関する情報の

 

・黒鉛負極の反応と特徴
・SEI(固体電解質相)の生成、役割
・黒鉛負極と充放電曲線

 

について解説します。
 

 

 

リチウムイオン電池の負極活物質 黒鉛の反応と特徴

 

黒鉛の充放電反応は黒鉛のグラフェン層間にLiイオンが脱・挿入する反応です。

 

充電時に負極にLiイオンが挿入され、放電時に負極からLiイオンが放出されます。

 

 

 

黒鉛負極の基礎的な物性は以下の通りです。

 

・理論容量は372mAh/gです。
・黒鉛の層間距離は0.335nmであり、Liイオンが挿入されると0.37nmまで広がります(LiC6時)。
・グラフェン層の積層枚数は300枚以上の場合が多いです。
・初期充放電効率は90~95%程度であり、難黒鉛化炭素、易黒鉛化炭素と比べて、大きい
 (下に解説していますが、黒鉛の方が反応サイトが少なく、不可逆容量が小さいためです)。
・密度は2.1~2.25gcm^-1程度です。
・質量あたりの放電容量は300~350mAh/gと難黒鉛化炭素、易黒鉛化炭素と比べて小さいですが、
 密度が大きいため、体積当たりの容量密度は大きいです。

 


関連記事

難黒鉛化炭素の反応と特徴
易黒鉛化炭素の反応と特徴

 

 

SEI(固体電解質相)の生成、役割

 

電池は完全な放電状態で組まれ(正極がLiイオンを含むため)、初回充電を行うことで初めて電池として機能します。この初回充電時に負極表面にSEI(固体電解質相)と呼ばれる数十nmの薄い皮膜が出来ます。

 

SEIが出来る理由は、電解液の電位窓と炭素系負極の作動電位に関係しています。

 

通常電解液にはEC(エチレンカーボネート)をベースとしてDECやEMC等をブレンドさせたものを使用していますが、分解されない作動電位の範囲(電位窓と呼びます)は1V~4V強付近です。

 

これに対して、Liが挿入された負極の電位はLi/Li+系に近く0.1V付近であり、電解液の電位窓を超えるため、電解液が還元的に分解され、黒鉛表面上に皮膜を形成します。

 

被膜の形成は主にECとLiCxとの反応であり、リチウムアルキルカーボネートが生成されます。
他の反応も発生し、LiFやLi2CO3なども存在することが知られています。

 

 
SEIの形成反応は上述の通りLiCxとECとの反応であり、Liを消費するため、初回充電時の電気量に比べ、初回放電時の容量は小さくなります。

 

初回充電時の電気量-初回放電時の容量を不可逆容量と呼び、この後の充放電ではこの容量分は使用できません。また、電池設計時に不可逆容量分も考慮して設計されます。

 

初回放電容量/初回充電電気量×100のことを充放電効率(クーロン効率)と呼びます)

 

 

またSEIは非常に優れモノで、2回目以降Liイオンの挿入、放出時、電解液の分解はほぼ完全に抑制してくれます。

 

ただし、速度論的に抑制しているため非常にゆっくりではありますが、皮膜が徐々に堆積されていき容量低下や抵抗上昇につながります。化学反応により被膜が徐々に堆積されていきますので、アレニウスの式に従います。

 

 

 

 

つまり、高温の方がexp項内の値が大きくなるため、負極での劣化がより進みます
リチウムイオン電池を長持ちさせる方法でも解説)。

 

電池のサイクル試験やフロート試験、放置試験における容量低下の主な原因は、電池にもよりますが負極の堆積物増加である場合が多いです。

 

 

関連記事

電池の充放電効率とは?
電池を長持ちさせる方法
難黒鉛化炭素の反応と特徴
易黒鉛化炭素の反応と特徴

 

 

 

黒鉛負極と充放電曲線

下記に黒鉛を使用した際の単極の充放電曲線のイメージ図を示します。
(単極を評価する試験として、三電極法により測定した際のイメージ図です。)

 

Liの挿入反応が進む(充電が進む)と同時に電位が急激に下がっていくことが特徴です。
イメージ図黄色部分が不可逆容量に当たります。

 

曲線中に段が付いている部分があります(図中点線枠)。これは黒鉛負極がステージ構造を有するためです。ステージ構造とは、ある黒鉛層にすべてLiが入りきったら、次のステージにいく・・・という構造であり、
ステージnでは、Liイオンが挿入された層、一層に対して、挿入されていない層がn層ある状態です。

 

例えばステージ3を例にすると、Liイオンが挿入されている層を〇、されていない層を×とすると
〇×××〇×××〇・・・・といった具合に挿入された状態です。

 

ステージ1~4まであります。

 

 

 

 

上述のよう、電位が急激に下がるため、電池にした場合非晶質炭素と比べ作動電圧、エネルギー密度が高くなります。

 

また、結晶構造を有することや単位質量、単位体積当たりの反応サイトが非晶質炭素(難黒鉛化炭素や
異国塩化炭素)と比べて小さいことからレート特性は非晶質炭素より劣ります(電荷移動抵抗が高くなる)。

 

逆に反応サイトが小さいということは不可逆容量が小さくなることに繋がり、容量の観点からは黒鉛負極(理論容量は372mAh/gです)の方が、非晶質炭素(難黒鉛化炭素や易黒鉛化炭素)と比べて優れます。

 

関連記事

三電極法とは?
容量とは?
難黒鉛化炭素の反応と特徴
易黒鉛化炭素の反応と特徴

 

 

リチウムイオン電池の負極活物質 黒鉛の反応と特徴 関連ページ

リチウムイオン電池の正極活物質とコバルト酸リチウムの反応と特徴
【容量の算出】コバルト酸リチウムの理論容量を算出する方法
リン酸鉄リチウム(LFP)の反応と特徴 Li-Fe(リチウムフェライト)電池とは?鉛蓄電池の置き換えに適している?
【容量の算出】マンガン酸リチウムの理論容量を算出する方法
リン酸鉄リチウム(LFP)の合成方法
【容量の算出】リン酸鉄リチウムの理論容量を算出する方法
マンガン酸リチウムの反応と特徴
リチウムイオン電池における導電助剤の位置づけ VGCF(気相成長炭素)の特徴
正極の電極構造
難黒鉛化炭素の反応と特徴
易黒鉛化炭素の反応と特徴
チタン酸リチウムの反応と特徴
リチウムイオン電池の電解液(溶媒)の材料化学
リチウムイオン電池の電解液(溶媒)に入れる添加剤の役割と種類(VC,FECなど)
リチウムイオン電池の電解液(塩)の材料化学 なぜ市販品ではLiPF6が採用されているか?
リチウムイオン電池におけるセパレータの位置づけと材料化学
リチウムイオン電池におけるバインダーの位置づけと材料化学
溶媒和・脱溶媒和とは?【リチウムイオン電池の反応と溶媒和・脱溶媒和)
【リチウムイオン電池材料の評価】セパレータの透気度とは?
リチウムイオン電池のセパレータに求められる特性
リチウムイオン電池の寿命予測方法(ルート則)
リチウムイオン電池の寿命予測方法(内部抵抗の上昇の予測)
リチウムイオン電池の劣化後の放電曲線(作動電圧)の予測方法
【アレニウスの式使用問題演習】リチウムイオン電池の寿命予測をExcelで行ってみよう!
【続アレニウスの式使用問題演習】リチウムイオン電池の寿命予測をExcelで行ってみよう!その2
【サイクル試験の寿命予測、劣化診断】リチウムイオン電池の寿命予測(サイクル試験)をExcelで行ってみよう!
リチウムイオン電池の寿命予測方法 ルート則とべき乗則
【リチウムイオン電池の解析】XRDとは?測定原理と得られる情報、X線回折装置
【リチウムイオン電池の解析】XRDなどに使用されるKα線とは?
【リチウムイオン電池の解析】XPSとは?測定原理と得られる情報
【リチウムイオン電池の解析】ラマン分光法とは?測定原理と得られる情報
【リチウムイオン電池の解析】IR(赤外分光法)とは??測定原理と得られる情報
【リチウムイオン電池の解析】ICP-MS(ICP質量分析法)とは??測定原理と得られる情報
【リチウムイオン電池の解析】SEMとは?測定原理と得られる情報
【解析関連用語】化学におけるinsituとはどういう意味?読み方は?【リチウムイオン電池の解析】
【演習問題】ランベルトベールの法則と計算・演習問題【リチウムイオン電池の解析】
DSCとは?測定原理と得られる情報は?
ヘンリーの吸着等温式とは?導出過程は?
ラングミュア(langmuir)の吸着等温式とは?導出過程は?
化学吸着と物理吸着の違いは?活性炭と物理吸着【電気二重層キャパシタ材料としても使用】
【演習問題】比表面積を求める方法【BET吸着_ラングミュア吸着】
【比表面積の計算】BET吸着とは?導出過程は?【リチウムイオン電池の解析】
【材料力学】弾性係数とは?求め方と使用方法【リチウムイオン電池の構造解析】
【材料力学】熱ひずみ・熱応力とは?導出と計算方法は?
【材料力学】ポアソン比とは?求め方と使用方法【リチウムイオン電池の構造解析】
【材料力学】応力-ひずみ線図とは?【リチウムイオン電池の構造解析】
【材料力学】材料のたわみ計算方法は?断面二次モーメント使用【リチウムイオン電池の構造解析】
【材料力学】クリープとは 材料のクリープ
【材料力学】断面二次モーメントとは?断面係数とは?【リチウムイオン電池の構造解析】
【材料力学】剥離強度とは?電極の剥離強度【リチウムイオン電池の構造解析】
【材料力学】トルクと動力・回転数 導出と計算方法【演習問題】
【材料力学】馬力と動力の変換方法【演習問題】
【材料力学】公差とは?公差の計算と品質管理
寸法収縮・成型収縮とは?計算問題を解いてみよう【演習問題】
【材料力学】固体の体積膨張率(体積膨張係数)とは?固体の体積膨張率の計算を行ってみよう【演習問題】
【材料力学】気体の体積膨張率(体積膨張係数)とは?気体の体積膨張率の計算を行ってみよう【演習問題】
ダイキャスト(ダイカスト)と鋳造(ちゅうぞう)の違いは?
絶縁距離とは?沿面距離と空間距離の違いは?
電池の安全性試験の種類
電池の安全性試験の位置づけと過充電試験
過充電試験の反応詳細
リチウムイオン電池の外部短絡試験とは?
リチウムイオン電池の内部短絡試験とは?
リチウムイオン電池の釘刺し試験とは?
リチウムイオン電池の振動試験とは?
リチウムイオン電池の熱衝撃試験とは?
リチウムイオン電池の過放電試験とは?
【演習問題】表面張力とは?原理と計算方法【リチウムイオン電池パックの接着】
接着剤が付く理由は?アンカー効果とは?【リチウムイオン電池パックの接着】
弾性接着剤とは?特徴は?シリコーンと変成シリコーンの違いは?【リチウムイオン電池パックの接着】
ホットメルト系接着剤とは?特徴は?【リチウムイオン電池パックの接着】
PPやPEは接着が難しい?理由と解決策は?【リチウムイオン電池パックの接着】
エポキシ接着剤とは?特徴は?【リチウムイオン電池パックの接着】
接着と粘着、接着剤と粘着剤の違いは?
接着剤における1液型と2液型(1液系と2液系)の違いは?
【角型電池】リチウムイオン電池における安全弁とは?
振動試験における対数掃引とは?直線掃引との違いは?
振動試験時の共振とは?【リチウムイオン電池の安全性】
【リチウムイオン電池の熱衝撃試験】熱膨張係数の違いによる応力の計算方法
【演習問題】金属の電気抵抗と温度の関係性 温度が上がると抵抗も上がる?
図積分とは?Excelで図積分を行ってみよう!
多孔度とは何?多孔度の計算方法は?電極の多孔度と電池性能の関係
正極にはなぜAl箔を使用?負極はなぜCu箔を使用?
真密度、見かけ密度(粒子密度)、タップ密度、嵩密度の違いは?
粉体における一次粒子・二次粒子とは?違いは?
負極のCu箔の作製方法 圧延銅箔
負極のCu箔の作製方法 電解銅箔
【リチウムイオン電池の水分測定】カールフィッシャー法の原理と測定方法
【演習問題】細孔径を求める方法【水銀圧入法】
mmHgとPa,atmを変換、計算する方法【リチウムイオン電池の解析】
蒸着とは?CVDとPVDの違いは?
【次世代電池】全固体電池とは?反応や特徴、メリット、デメリットは?
【リチウムイオン電池の材料】シリコン系負極の反応と特徴、メリット、デメリットは?【次世代電池の材料】
【全固体電池】ガラスとは何か?ガラス転移点(TG)oha全固体電池とは?反応や特徴、メリット、デメリットは?(コピー)
【次世代電池】イオン液体とは?反応や特徴、メリット、デメリット(課題)は?
プレドープ、プレドープ電池とは?リチウムイオン電池や電気二重層キャパシタとの違いは?
粘度とは?粘度と動粘度の違い
エネルギー変換効率とは?燃料電池の理論効率・理論起電力の計算方法【演習問題】
電位、電圧、電位差、電圧降下の違い【リチウムイオン電池関連の用語】
SBR(スチレンブタジエンゴム)とは?ゴムにおける加硫とは?【リチウムイオン電池の材料】
フィラーとは何か?剤と材の違いは?【リチウムイオン電池の材料】
有機酸とは?有機酸に対する耐性とは?【リチウムイオン電池の材料】
潜熱と顕熱とは?潜熱と顕熱の違いは?
ポリオレフィンとは何か?【リチウムイオン電池の材料】
エンプラ、スーパーエンプラとは何か?エンプラとスーパーエンプラの違いは?【リチウムイオン電池の材料】
化学におけるドープとは?プレドープとの違いは?
エクセルギ-とは?エクセルギ-の計算問題【演習問題】
エマルジョン・ラテックスとは?ラテックス系バインダーとは?【リチウムイオン電池の材料】
電池におけるプラトーの意味は?【リチウムイオン電池の用語】
単位のrpmとは?rpmの変換・計算方法【演習問題】
平均自由行程とは?式と導出方法は?【演習問題】
弾性衝突と非弾性衝突の違いは?【演習問題】
浮力とは何か?浮力の計算方法
シーリングとコーキングの違いは?
固体高分子形燃料電池(PEFC)における電解質膜の役割は?種類は?
固体高分子形燃料電池(PEFC)における電極触媒とは?役割や種類は?
固体高分子形燃料電池(PEFC)における酸素還元活性(ORR)とは?
固体高分子形燃料電池(PEFC)におけるECSA(白金有効利用面積)とは?
固体高分子形燃料電池(PEFC)におけるフラッディング・ドライアウトとは?
固体高分子形燃料電池(PEFC)におけるクロスオーバー(ガスクロスオーバー)とは?
固体高分子形燃料電池(PEFC)におけるアイオノマー(イオノマー)とは?役割は?
wt%(重量パーセント)・mass(質量パーセント)とは?計算方法は?【演習問題】
放射能の半減期 計算方法と導出方法は?【反応速度論】
ストークス半径とイオン半径
ファントホッフの式とは?導出と計算方法は【演習問題】
化学的安定性 HOMO-LUMO
遠心分離と遠心効果 計算と導出方法【演習問題】
rpmをGに変換する方法 計算問題を解いてみよう【演習問題】
w/w%・w/v%・v/v% 定義と計算方法【演習問題】
分子式・組成式・化学式 見分け方と違いは?【演習問題】
テルミット反応 リチウムイオン正極材のリサイクル
誘電率と比誘電率 換算方法【演習問題】
誘電体(絶縁体)と誘電分極(イオン分極・電子分極・配向分極)
導体と静電誘導 静電誘導と誘電分極との違いは?
屈折率と比誘電率の関係 計算問題を解いてみよう【演習問題】
双極子と双極子モーメント 意味と計算方法
回折格子における格子定数とは?格子定数の求め方
引火点と発火点(着火点)の違いは?【危険物取扱者乙4・甲種などの考え方】
燃焼範囲とは【危険物取扱者乙4・甲種などの考え方】
危険物における自然発火とは【危険物取扱者乙4・甲種などの考え方】
危険物における指定数量 指定数量と倍数の計算方法【危険物取扱者乙4・甲種などの考え方】
危険物における保安距離や保有空地とは【危険物取扱者乙4・甲種などの考え方】
光速と音速はどっちが早いのか 光速と音速のマッハ数は?雷におけるの光と音の関係は?
マッハ数の定義は?計算問題を解いてみよう【演習問題】
1光年の意味とその距離は 地球何周分?ロケットでは何年かかる?新幹線では?
アンモニアの分子の形(立体構造)が三角錐(四面体)になる理由は?三角錐と正四面体の違いは?アンモニアの結合角は107度?
アンモニアの分子式・構造式・電子式・イオン式・分子量は?イオン反応式は?
水分子(H2O)の形が直線型ではなく折れ線型となる理由 水分子の形が直線型ではなく折れ線型となる理由 水の結合角が104.5度となる理由
二酸化炭素(CO2)の形が折れ線型ではなく直線型である理由
メタン(CH4)の形が正四面体である理由 結合角は109.5度(°)?

HOME プロフィール お問い合わせ